PD2021_Etapa_2

PN-III-P1-1.1-PD-2021-0145

  • Project code:

                • PN-III-P1-1.1-PD-2021-0145
  • Project Title:

                •  [FLYSURVEY]
        • Contract No. PD 85 from 19/04/2022
        •  
          •  

 

***

2023, December – Project report  PN-III-P1-1.1-PD-2021-0145 

 

Stage No. 2

Stage title: [WP1,WP2,WP3] Realizare DFM, analiza de precizie si implementarea in studii de caz

Abstract

[Stage 2, 2023]/Rezumatul etapei 2, 2023:

A doua etapa a proiectului a constat intr-o continuare a procesului de revizuire a literaturii de specialitate si cercetari bibliografice privind folosirea tehnologiilor LiDAR si digital photography Structure-from-Motion (SfM). Pe langa cercetarile bibliografice, s-a efectuat o cercetare originala, diseminata printr-un articol stiintific, utilizand aparatura din dotare, inainte de achizitionarea de echipamente noi. Procesului de achizitie de echipamente a inceput in lunile martie-aprilie a etapei 2, cu ocazia alocarii de fonduri. In cadrul acestei etape, dupa intrarea in gestiunea Departamentului Masuratori Terestre si Cadastru a aparaturii achizitionate, s-au efectuat numeroase teste pe teren si prelucrari de date, in vederea perfectionarii si optimizarii livrabilelor rezultate cu senzori de specialitate. In cadrul primelor sub-etape dedicate perfectionarii si optimizarii modelului DFM, s-au efectuat analize de precizie a masuratorilor rezultate, prin analiza norilor de puncte si a modelelor digitale de elevatie fata de puncta masurate la sol prin metode si instrumente topo-geodezice. Implementarea in studii de caz a fost efectuata in aceasta etapa, prin alegerea unei alunecari de teren active, urmata de masuratori in vederea elaborarii modelului DFM conceput, cat si o implementare intr-un studiu de caz necesar domeniului de constructii. Masuratorile necesare celor doua implementari pe studii de caz prevazute in proiect au fost efectuate in lunile august-septembrie-octombrie. La momentul actual, procesarea de date a fost finalizata pentru cercetarile aferente implementarii modelului DFM in monitorizarile de alunecari de teren, si este in lucru la un stadiu avansat scrierea articolului stiintific. Se preconizeaza trimiterea manuscrisului la un jurnal indexat ISI in urmatoarele 30 zile, iar apoi continuarea procesarii de date, finalizarea si trimiterea celuilat articol (referitor la implementarea modelului DFM in constructii) pana in luna martie 2024.

Rezultate științifice obținute pe parcursul derulării proiectului

Cercetarile finalizate si diseminate in cadrul acestei etape au constat dintr-un studiu de caz adecvat tematicii proiectului, unde s-au folosit principii si obiective din metodologia gandita in proiectul Flysurvey, dar folosind instrumentatia semi-profesionista din dotarea centrului Erris “Research Center for Land Measurements and Geospatial Data Processing” din cadrul UTCN. Diseminarea rezultatelor a fost efectuata prin publicarea unui articol intr-un jurnal indexat WoS cu factor de impact 3.0 si situat in Q2.

Activitățile derulate în cadrul acestei etape și rezultatele științifice aferente acestora

Activitate 2.1: [A.I.1] Achizitie echipamente: platforma UAV, senzori si software

Activitate 2.2: [A.I.2] Zboruri de testare si planificari de misiuni, teste de calibrare a camerei si a senzorilor

Activitate 2.3: [A.I.2] Teste de achiziție de date si prelucrarea livrabilelor LiDAR și fotogrammetrice

Activitate 2.4: [A.I.1] [A.I.3, A.II.1] Analiza preciziei obtinute intre livrabilele generate de fiecare senzor

Activitate 2.5: [A.I.4, A.II.2] Fuziunea datelor și dezvoltarea DFM (digital feature model) conform metodologiei prevazute in proiect

In cadrul acestor activitati au fost efectuate principalele etape premergatoare implementarii conceptului DFM. Acestea au constat in achizitia de echipamente, testarea, calibrarea si perfectionarea calitatii livrabilelor, cat si postprocesarea acestora.

Sistemul UAV DJI M300 cu senzorul P1 (stanga) si senzorul L1 (dreapta)

Testarea echipamentelor intr-un mediu controlat (stanga) si statia DRTK (dreapta)

 Testarea sistemului DJI M300 RTK cu camera P1 si LiDAR L1

  Testarea sistemului si prelucrarea datelor fotogrammetrice

 

Testarea sistemului si prelucrarea datelor LiDAR

 

Activitate 2.5: [A.III.1, A.III.2] Implementarea de DFM propus ca inovatie metodologica intr-o lucrare de monitorizare de alunecari de teren

 

            In cadrul acestei etape a fost aleasa o zona de studiu cu alunecari de teren active, si cu o susceptibilitate crescuta la aparitia acestor hazarde naturale. Masuratorile de teren au fost efectuate in lunile august-septembrie-octombrie. La momentul actual, procesarea de date a fost finalizata pentru cercetarile aferente implementarii modelului DFM in monitorizarile de alunecari de teren, si este in lucru la un stadiu avansat scrierea articolului stiintific. Se preconizeaza trimiterea manuscrisului la un jurnal indexat ISI in urmatoarele 30 zile. Atasat sunt o parte din figurile prevazute in articol.

Activitate 2.6: [A.IV.1, A.IV.2] Implementarea de DFM propus ca inovatie metodologica intr-o lucrare de ridicari topografice in vederea elaborarii de documentatii tehnice

 

            In cadrul acestei etape a fost aleasa o implementare intr-un studiu de caz necesar domeniului de constructii. Masuratorile necesare implementarii studiului de caz prevazut in proiect a fost finalizat in luna octombrie. La momentul actual, procesarea de date este in desfasurare, iar finalizarea si trimiterea articol se realizeaza pana in luna martie 2024.

 

Activitati complementare etapei 2 (2023):

In cadrul acestei etape si perioade de raportare, directorul de proiect a finalizat cercetari intr-un amplu studiu de caz adecvat tematicii proiectului, unde s-au folosit principii si obiective din metodologia gandita in proiectul Flysurvey, dar folosind instrumentatia semi-profesionista din dotarea centrului Erris “Research Center for Land Measurements and Geospatial Data Processing” din cadrul UTCN. Rezultatele obtinute evidentiaza avantajele indispensabile in folosirea sistemelor UAV pentru aplicatii in inginerie civila, dar si afirma nevoia de o implementare si fuziune a norilor de puncte achizitionati cu tehnologiile LiDAR si RGB digital photography. Diseminarea rezultatelor a fost efectuata prin publicarea unui articol intr-un jurnal indexat WoS cu factor de impact 3.0 (Q2). Titlul articolului este “The use of budget UAV systems and GIS spatial analysis in cadastral and construction surveying for building planning”, disponibil online accesand urmatorul link:

https://www.frontiersin.org/articles/10.3389/fbuil.2023.1206947/full.

Jurnalul in care a fost publicat articolul este Frontiers in Built Environment (https://www.frontiersin.org/journals/built-environment), un jurnal indexat Web of Science cu Factorul de Impact 3.0, respectiv quartila Q2 din categoria “CONSTRUCTION & BUILDING TECHNOLOGY”.

O selectie a ideilor principale prezentate in articol, cat si rezultate obtinute (figurile atasate) ce demonstreaza numeroasele avantaje a modelarii 3D folosind fotogrammetria, dar si limitarile acestei metode de unde reiese nevoia de o metodologie imbunatatita prin fuziunea cu date LiDAR (crearea metodologiei DFM din proiectul Flysurvey ce urmeaza sa fie facuta dupa achizitia de echipamente in etapele 2 si 3) sunt prezentate in urmatoarele paragrafe:

“Incertitudinea care vine cu planificarea, construirea și întreținerea clădirilor este o problemă constantă pentru arhitecți și inginerii civili. Deoarece topografia este cadrul care unește arhitectura și peisajul, proiectele de proiectare și planificare se bazează în mare măsură pe o gamă largă de metode de monitorizare, topografie și date cuprinzătoare de teren. Alături de instrumentele tradiționale topo-geodezice utilizate în topografia terenurilor și a construcțiilor, vehiculele aeriene fără pilot echipate cu camere digitale și structură din software-ul de mișcare au fost utilizate din ce în ce mai mult recent într-o varietate de domenii pentru a crea modele digitale de elevație de înaltă rezoluție. În ciuda acestei utilizări larg răspândite, în majoritatea proiectelor de topografie se consideră că reprezentările topografice produse prin această tehnologie sunt inferioare celei obținute cu relevările efectuate prin metode convenționale, alături de alte constrângeri impuse de legislație, de mediu și de condițiile meteorologice. În timp ce anumite limitări ale sistemelor de vehicule aeriene fără pilot (UAV) sunt provocatoare, avantajul lor de a culege date dintr-o perspectivă diferită și rezultatele generate au potențialul de a avansa semnificativ industria construcțiilor. Prezentul articol oferă o privire de ansamblu asupra utilității sistemelor UAV bugetare în dezvoltarea unei metodologii care însoțește procesul de sondaj convențional pentru aplicațiile de inginerie civilă. Astfel, alături de sondajul stabilit pentru documentațiile cadastrale și tehnice necesare procesului de arhitectură, a fost elaborat un sondaj UAV complementar, cu analiză spațială ulterioară într-un sistem de informații geografice (GIS), în vederea extinderii gamei de livrabile. Acestea includ hartă ortofoto utilă, reprezentări la scară mai mare și mai dense ale topografiei, modele digitale de suprafață și teren, hărți de panta, aspect și radiație solară, care vor oferi informații și instrucțiuni utile la începutul procesului de planificare a construcției. Metodologia conține două studii de caz cu grade diferite de provocări legate de teren și vegetație și, de asemenea, prezintă o evaluare a acurateței și o discuție generală asupra beneficiilor privind implementarea UAV.

UAV-urile au fost în curs de dezvoltare extinsă în ultimele decenii, iar progresul lor în tehnologie și aplicabilitate reprezintă un salt cuantic pentru multe domenii de activitate. Sondajele la scară largă sunt de obicei utilizate în inginerie civilă pentru a aborda incertitudinile care pot apărea înainte, în timpul și după construcție. UAV-urile oferă topografilor, arhitecților și inginerilor civili modalități suplimentare de a-și înțelege proiectele sau problemele pe care le întâmpină, precum și să completeze datele obținute din teren. Se ajunge la concluzia că utilizarea UAV-urilor și a analizei spațiale GIS poate fi un progres semnificativ în cercetarea și aplicațiile profesionale ale proiectării clădirilor. Funcţionarea foarte simplă a acestor dispozitive și potențialul de a obține DSM, DTM și ortofoto georeferențiat de înaltă rezoluție, fac posibilă extinderea bazelor de date și tehnicilor de cartografiere utilizate în prezent în industria construcțiilor. Dificultăți operaționale încă există atunci când se utilizează fotogrammetria UAV pentru topografie. Cea mai mare provocare este mediul, în special prezența vegetației medii și înalte. Sistemele cu georeferențiere directă superioară, inclusiv GPS cu frecvență dublă pe UAV, precum și senzori de măsurare mai precisi și avantajoși, cum ar fi soluții LiDAR pentru o mai bună determinare DTM, vor fi disponibile în curând la o scară mai mare și un plan de accesibilitate. Metodologia multidisciplinară utilizată în studiu a fost practică, de încredere și de succes. Datele, interpretarea și discuțiile oferă informații științifice și utile relevante pentru zona de studiu și alte domenii de cercetare din întreaga lume. Pe baza constatărilor, investigațiile și instrumentele ulterioare vor fi extinse. Drept urmare, UAV-urile echipate cu LiDAR sunt următorul deziderat pentru măsurători mai amănunțite care pot pătrunde în stratul de vegetație și pot oferi reprezentări mai precise ale terenului gol, pentru progrese ulterioare în proiectele de arhitectură și inginerie civilă”.

Articolul are menționat numele prezentului proiect precum și cel al finanțatorului în secțiunea „acknowledgments”, respectiv: This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS-UEFISCDI, project number PN-III-P1-1.1-PD-2021-0145, within PNCDI III.

Tot in cadrul perioadei de raportare, directorul de proiect a participat la doua conferinte internationale si la un workshop, toate acestea fiind mentionate pe platforma EVoC.

Așadar, conform Contractului de Finanțare pentru PD 85 din 19/04/2023 s-au desfășurat toate activitățile programate pentru perioada de raportare (01.01.2023-31.12.2023). Finalizarea celor doua articole prevazute si trimiterea acestora la jurnale indexate ISI urmeaza sa se efectueze pana la finalizarea proiectului.

 

Director de Proiect,

Sef lucr. dr. ing. Paul SESTRAS

 

Articolul publicat cu rezultate din proiect:

Sestras, P., Roșca, S., Bilașco, Ș., Șoimoșan, T., & Nedevschi, S. (2023). The Use of Budget UAV Systems and GIS Spatial Analysis in Cadastral and Construction Surveying for Building PlanningFrontiers in Built Environment9, 1206947. https://doi.org/10.3389/fbuil.2023.1206947

 

References

Agüera-Vega, F., Carvajal-Ramírez, F., and Martínez-Carricondo, P. (2017). Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement 98, 221–227. doi:10.1016/j.measurement.2016.12.002

CrossRef Full Text | Google Scholar

Anders, N., Smith, M., Suomalainen, J., Cammeraat, E., Valente, J., and Keesstra, S. (2020). Impact of flight altitude and cover orientation on Digital Surface Model (DSM) accuracy for flood damage assessment in Murcia (Spain) using a fixed-wing UAV. Earth Sci. Inf. 13, 391–404. doi:10.1007/s12145-019-00427-7

CrossRef Full Text | Google Scholar

Asadi, K., Suresh, A. K., Ender, A., Gotad, S., Maniyar, S., Anand, S., et al. (2020). An integrated UGV-UAV system for construction site data collection. Automation Constr. 112, 103068. doi:10.1016/j.autcon.2019.103068

CrossRef Full Text | Google Scholar

Bandini, F., Sunding, T. P., Linde, J., Smith, O., Jensen, I. K., Köppl, C. J., et al. (2020). Unmanned Aerial System (UAS) observations of water surface elevation in a small stream: comparison of radar altimetry, LIDAR and photogrammetry techniques. Remote Sens. Environ. 237, 111487. doi:10.1016/j.rse.2019.111487

CrossRef Full Text | Google Scholar

Barrile, V., Fotia, A., Candela, G., and Bernardo, E. (2019). Integration of 3D model from UAV survey in BIM environment. Int. Archives Photogrammetry, Remote Sens. Spatial Inf. Sci. 42, 195–199. doi:10.5194/isprs-archives-xlii-2-w11-195-2019

CrossRef Full Text | Google Scholar

Bi, H., Zheng, W., Ren, Z., Zeng, J., and Yu, J. (2017). Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry. Int. J. Remote Sens. 38 (8-10), 2495–2510. doi:10.1080/01431161.2016.1249308

CrossRef Full Text | Google Scholar

Bilașco, Ș., Hognogi, G. G., Roșca, S., Pop, A. M., Iuliu, V., Fodorean, I., et al. (2022). Flash flood risk assessment and mitigation in digital-era governance using unmanned aerial vehicle and GIS spatial analyses case study: small river basins. Remote Sens. 14 (10), 2481. doi:10.3390/rs14102481

CrossRef Full Text | Google Scholar

Bilașco, Ș., Roșca, S., Vescan, I., Fodorean, I., Dohotar, V., and Sestras, P. (2021). A GIS-based spatial analysis model approach for identification of optimal hydrotechnical solutions for gully erosion stabilization. Case Study. Appl. Sci. 11 (11), 4847. doi:10.3390/app11114847

CrossRef Full Text | Google Scholar

Bock, T. (2015). The future of construction automation: technological disruption and the upcoming ubiquity of robotics. Automation Constr. 59, 113–121. doi:10.1016/j.autcon.2015.07.022

CrossRef Full Text | Google Scholar

Carrera-Hernández, J. J., Levresse, G., and Lacan, P. (2020). Is UAV-SfM surveying ready to replace traditional surveying techniques? Int. J. remote Sens. 41 (12), 4820–4837. doi:10.1080/01431161.2020.1727049

CrossRef Full Text | Google Scholar

Ćatić, J., Mulahusić, A., Tuno, N., and Topoljak, J. (2020). “Using the semi-professional UAV system in surveying the medium size area of complex urban surface,” in New technologies, development and application III 6 (Berlin, Germany: Springer International Publishing), 853–860.

Google Scholar

Devoto, S., Macovaz, V., Mantovani, M., Soldati, M., and Furlani, S. (2020). Advantages of using UAV digital photogrammetry in the study of slow-moving coastal landslides. Remote Sens. 12 (21), 3566. doi:10.3390/rs12213566

CrossRef Full Text | Google Scholar

Dolean, B. E., Bilașco, Ș., Petrea, D., Moldovan, C., Vescan, I., Roșca, S., et al. (2020). Evaluation of the built-up area dynamics in the first ring of Cluj-Napoca Metropolitan Area, Romania by semi-automatic GIS analysis of Landsat satellite images. Appl. Sci. 10 (21), 7722. doi:10.3390/app10217722

CrossRef Full Text | Google Scholar

Drewes, H., Kuglitsch, F. G., Adám, J., and Rózsa, S. (2016). The geodesist’s handbook 2016. J. geodesy 90 (10), 907–1205. doi:10.1007/s00190-016-0948-z

CrossRef Full Text | Google Scholar

Fernández, T., Pérez-García, J. L., Gómez-López, J. M., Cardenal, J., Moya, F., and Delgado, J. (2021). Multitemporal landslide inventory and activity analysis by means of aerial photogrammetry and LiDAR techniques in an area of Southern Spain. Remote Sens. 13 (11), 2110. doi:10.3390/rs13112110

CrossRef Full Text | Google Scholar

Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., and Carbonneau, P. E. (2013). Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landforms 38 (4), 421–430. doi:10.1002/esp.3366

CrossRef Full Text | Google Scholar

Forlani, G., Dall’Asta, E., Diotri, F., Morra di Cella, U., Roncella, R., and Santise, M. (2018). Quality assessment of DSMs produced from UAV flights georeferenced with on-board RTK positioning. Remote Sens. 10 (2), 311. doi:10.3390/rs10020311

CrossRef Full Text | Google Scholar

Ghilani, C. D. (2017). Adjustment computations: Spatial data analysis. Hoboken, New Jersey, United States: John Wiley and Sons.

Google Scholar

Ham, Y., and Kamari, M. (2019). Automated content-based filtering for enhanced vision-based documentation in construction toward exploiting big visual data from drones. Automation Constr. 105, 102831. doi:10.1016/j.autcon.2019.102831

CrossRef Full Text | Google Scholar

Herban, S. I., Vîlceanu, C. B., and Grecea, C. (2017). Road-Structure monitoring with Modern geodetic technologies. J. Surv. Eng. 143 (4), 05017004. doi:10.1061/(ASCE)SU.1943-5428.0000218

CrossRef Full Text | Google Scholar

Ismael, R. Q., and Henari, Q. Z. “Accuracy assessment of UAV photogrammetry for large scale topographic mapping,” in Proceedings of the 2019 International Engineering Conference (IEC)Erbil, Iraq2019, June (IEEE), 1–5.

Google Scholar

Johnson, K. M., and Ouimet, W. B. (2018). An observational and theoretical framework for interpreting the landscape palimpsest through airborne LiDAR. Appl. Geogr. 91, 32–44. doi:10.1016/j.apgeog.2017.12.018

CrossRef Full Text | Google Scholar

Julge, K., Ellmann, A., and Köök, R. (2019). Unmanned aerial vehicle surveying for monitoring road construction earthworks. baltic J. road bridge Eng. 14 (1), 1–17. doi:10.7250/bjrbe.2019-14.430

CrossRef Full Text | Google Scholar

Jumani, A. K., Laghari, R. A., and Nawaz, H. (2022). Unmanned aerial vehicles: A review. Cogn. Robot. 3, 8–22. doi:10.1016/j.cogr.2022.12.004

CrossRef Full Text | Google Scholar

Koukouvelas, I. Κ., Nikolakopoulos, K. G., Zygouri, V., and Kyriou, A. (2020). Post-seismic monitoring of cliff mass wasting using an unmanned aerial vehicle and field data at Egremni, Lefkada Island, Greece. Geomorphology 367, 107306. doi:10.1016/j.geomorph.2020.107306

CrossRef Full Text | Google Scholar

Kršák, B., Blišťan, P., Pauliková, A., Puškárová, P., Kovanič, Ľ. M., Palková, J., et al. (2016). Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study. Measurement 91, 276–287. doi:10.1016/j.measurement.2016.05.028

CrossRef Full Text | Google Scholar

Kyriou, A., Nikolakopoulos, K. G., and Koukouvelas, I. K. (2022). Timely and low-cost remote sensing practices for the assessment of landslide activity in the service of hazard management. Remote Sens. 14 (19), 4745. doi:10.3390/rs14194745

CrossRef Full Text | Google Scholar

Leberl, F., Irschara, A., Pock, T., Meixner, P., Gruber, M., Scholz, S., et al. (2010). Point clouds. Photogrammetric Eng. Remote Sens. 76 (10), 1123–1134. doi:10.14358/pers.76.10.1123

CrossRef Full Text | Google Scholar

Li, Y., Yong, B., Van Oosterom, P., Lemmens, M., Wu, H., Ren, L., et al. (2017). Airborne LiDAR data filtering based on geodesic transformations of mathematical morphology. Remote Sens. 9 (11), 1104. doi:10.3390/rs9111104

CrossRef Full Text | Google Scholar

Lin, Z., Kaneda, H., Mukoyama, S., Asada, N., and Chiba, T. (2013). Detection of subtle tectonic–geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey. Geomorphology 182, 104–115. doi:10.1016/j.geomorph.2012.11.001

CrossRef Full Text | Google Scholar

Liu, P., Chen, A. Y., Huang, Y. N., Han, J. Y., Lai, J. S., Kang, S. C., et al. (2014). A review of rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering. Smart Struct. Syst. 13 (6), 1065–1094. doi:10.12989/sss.2014.13.6.1065

CrossRef Full Text | Google Scholar

Martínez-Carricondo, P., Agüera-Vega, F., Carvajal-Ramírez, F., Mesas-Carrascosa, F. J., García-Ferrer, A., and Pérez-Porras, F. J. (2018). Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. Int. J. Appl. earth observation geoinformation 72, 1–10. doi:10.1016/j.jag.2018.05.015

CrossRef Full Text | Google Scholar

Mohamed, N., Al-Jaroodi, J., Jawhar, I., Idries, A., and Mohammed, F. (2020). Unmanned aerial vehicles applications in future smart cities. Technol. Forecast. Soc. change 153, 119293. doi:10.1016/j.techfore.2018.05.004

CrossRef Full Text | Google Scholar

Nikolakopoulos, K. G., Kyriou, A., and Koukouvelas, I. K. (2022). Developing a guideline of unmanned aerial vehicle’s acquisition geometry for landslide mapping and monitoring. Appl. Sci. 12 (9), 4598. doi:10.3390/app12094598

CrossRef Full Text | Google Scholar

Nouwakpo, S. K., Weltz, M. A., and McGwire, K. (2016). Assessing the performance of structure-from-motion photogrammetry and terrestrial LiDAR for reconstructing soil surface microtopography of naturally vegetated plots. Earth Surf. Process. Landforms 41 (3), 308–322. doi:10.1002/esp.3787

CrossRef Full Text | Google Scholar

Oniga, V. E., Breaban, A. I., Pfeifer, N., and Chirila, C. (2020). Determining the suitable number of ground control points for UAS images georeferencing by varying number and spatial distribution. Remote Sens. 12 (5), 876. doi:10.3390/rs12050876

CrossRef Full Text | Google Scholar

Oskin, M. E., Arrowsmith, J. R., Corona, A. H., Elliott, A. J., Fletcher, J. M., Fielding, E. J., et al. (2012). Near-field deformation from the El Mayor–Cucapah earthquake revealed by differential LIDAR. Science 335 (6069), 702–705. doi:10.1126/science.1213778

PubMed Abstract | CrossRef Full Text | Google Scholar

Ouédraogo, M. M., Degré, A., Debouche, C., and Lisein, J. (2014). The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds. Geomorphology 214, 339–355. doi:10.1016/j.geomorph.2014.02.016

CrossRef Full Text | Google Scholar

Pheng, L. S., and Meng, C. Y. (2018). Managing productivity in construction: JIT operations and measurements. England, UK: Routledge.

Google Scholar

Sanz-Ablanedo, E., Chandler, J. H., Rodríguez-Pérez, J. R., and Ordóñez, C. (2018). Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. Remote Sens. 10 (10), 1606. doi:10.3390/rs10101606

CrossRef Full Text | Google Scholar

Sestras, P., Bilașco, Ș., Roșca, S., Veres, I., Ilies, N., Hysa, A., et al. (2022). Multi-instrumental approach to slope failure monitoring in a landslide susceptible newly built-up area: topo-geodetic survey, UAV 3D modelling and ground-penetrating radar. Remote Sens. 14 (22), 5822. doi:10.3390/rs14225822

CrossRef Full Text | Google Scholar

Sestras, P. (2021). Methodological and on-site applied construction layout plan with batter boards stake-out methods comparison: A case study of Romania. Appl. Sci. 11 (10), 4331. doi:10.3390/app11104331

CrossRef Full Text | Google Scholar

Shahbazi, M., Sohn, G., Théau, J., and Menard, P. (2015). Development and evaluation of a UAV-photogrammetry system for precise 3D environmental modeling. Sensors 15 (11), 27493–27524. doi:10.3390/s151127493

PubMed Abstract | CrossRef Full Text | Google Scholar

Siebert, S., and Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Automation Constr. 41, 1–14. doi:10.1016/j.autcon.2014.01.004

CrossRef Full Text | Google Scholar

Solazzo, D., Sankey, J. B., Sankey, T. T., and Munson, S. M. (2018). Mapping and measuring aeolian sand dunes with photogrammetry and LiDAR from unmanned aerial vehicles (UAV) and multispectral satellite imagery on the Paria Plateau, AZ, USA. Geomorphology 319, 174–185. doi:10.1016/j.geomorph.2018.07.023

CrossRef Full Text | Google Scholar

Sona, G., Pinto, L., Pagliari, D., Passoni, D., and Gini, R. (2014). Experimental analysis of different software packages for orientation and digital surface modelling from UAV images. Earth Sci. Inf. 7, 97–107. doi:10.1007/s12145-013-0142-2

CrossRef Full Text | Google Scholar

Stott, E., Williams, R. D., and Hoey, T. B. (2020). Ground control point distribution for accurate kilometre-scale topographic mapping using an RTK-GNSS unmanned aerial vehicle and SfM photogrammetry. Drones 4 (3), 55. doi:10.3390/drones4030055

CrossRef Full Text | Google Scholar

Takebayashi, H., Kasahara, M., Tanabe, S., and Kouyama, M. (2017). Analysis of solar radiation shading effects by trees in the open space around buildings. Sustainability 9 (8), 1398. doi:10.3390/su9081398

CrossRef Full Text | Google Scholar

Tatum, M. C., and Liu, J. (2017). Unmanned aircraft system applications in construction. Procedia Eng. 196, 167–175. doi:10.1016/j.proeng.2017.07.187

CrossRef Full Text | Google Scholar

Tkáč, M., and Mésároš, P. (2019). Utilizing drone technology in the civil engineering. Sel. Sci. Papers-Journal Civ. Eng. 14 (1), 27–37. doi:10.1515/sspjce-2019-0003

CrossRef Full Text | Google Scholar

Tonkin, T. N., and Midgley, N. G. (2016). Ground-control networks for image based surface reconstruction: an investigation of optimum survey designs using UAV derived imagery and structure-from-motion photogrammetry. Remote Sens. 8 (9), 786. doi:10.3390/rs8090786

CrossRef Full Text | Google Scholar

Turner, D., Lucieer, A., and Wallace, L. (2013). Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Trans. Geoscience Remote Sens. 52 (5), 2738–2745. doi:10.1109/tgrs.2013.2265295

CrossRef Full Text | Google Scholar

Varbla, S., Puust, R., and Ellmann, A. (2021). Accuracy assessment of RTK-GNSS equipped UAV conducted as-built surveys for construction site modelling. Surv. Rev. 53 (381), 477–492. doi:10.1080/00396265.2020.1830544

CrossRef Full Text | Google Scholar

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314. doi:10.1016/j.geomorph.2012.08.021

CrossRef Full Text | Google Scholar

Yeom, J. M., Park, S., Chae, T., Kim, J. Y., and Lee, C. S. (2019). Spatial assessment of solar radiation by machine learning and deep neural network models using data provided by the coms mi geostationary satellite: A case study in South Korea. Sensors 19 (9), 2082. doi:10.3390/s19092082

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Keywords: land survey, mapping, UAV, photogrammetry, GIS, digital terrain model, construction planning

Citation: Sestras P, Roșca S, Bilașco Ș, Șoimoșan TM and Nedevschi S (2023) The use of budget UAV systems and GIS spatial analysis in cadastral and construction surveying for building planning. Front. Built Environ. 9:1206947. doi: 10.3389/fbuil.2023.1206947

Received: 16 April 2023; Accepted: 01 August 2023; Published: 11 August 2023.

Copyright © 2023 Sestras, Roșca, Bilașco, Șoimoșan and Nedevschi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

 

 

 

***

 

 

***

 

***

2022, December – Project report  PN-III-P1-1.1-PD-2021-0145 

 

 Project code: PN-III-P1-1.1-PD-2021-0145

Contract No. PD 85 from 19/04/2022

Project Title:  [FLYSURVEY]

Stage No. 1

Stage title: [WP1] Investigations and preliminary steps for obtaining DFM (digital feature model)

 

Abstract [Stage 1, 2022]: The first stage of the project consisted of an extensive investigation process of specialized literature and research regarding the use of LiDAR and Structure-from-Motion (SfM) digital photography technologies. In addition to bibliographic research, preparatory steps were taken for the equipment acquisition process that is to begin in the first month of stage 2 (January 2023), and some administrative procedures provided for in the project were carried out (e.g. preparation of the web page of the project). During this stage, the research of a case study was completed in which principles and objectives from the methodology conceived in the Flysurvey project were used. The dissemination of the results was carried out by publishing an article in a WoS indexed journal with an impact factor (IF), ranked in Q1. In stages 2 and 3, the complexity of the research will increase through the acquisition and implementation of modern sensors and technologies (the UAV system / professional drone, the LiDAR sensor, and the DJI P1 RGB sensor), in order to develop and test the innovative DFM methodology, according to the proposal of project.

 

***

reSULTS

According to the ‘Financing Contract’ for PD 85, dated 04/19/2022, all the activities scheduled within the project for the reporting period (04/01/2022-12/31/2022) were carried out, with 100% of them being completed.

 

Main results: [Articles] Publication of a manuscript in a Q1 journal: Remote Sensing. 202214(22), 5822; https://doi.org/10.3390/rs14225822

(This article belongs to the Special Issue UAVs for Civil Engineering Applications)
 
 
 
 
Article citation (citation styles):
 
MDPI and ACS Style

Sestras, P.; Bilașco, Ș.; Roșca, S.; Veres, I.; Ilies, N.; Hysa, A.; Spalević, V.; Cîmpeanu, S.M. Multi-Instrumental Approach to Slope Failure Monitoring in a Landslide Susceptible Newly Built-Up Area: Topo-Geodetic Survey, UAV 3D Modelling and Ground-Penetrating Radar. Remote Sens. 202214, 5822. https://doi.org/10.3390/rs14225822

AMA Style Sestras P, Bilașco Ș, Roșca S, Veres I, Ilies N, Hysa A, Spalević V, Cîmpeanu SM. Multi-Instrumental Approach to Slope Failure Monitoring in a Landslide Susceptible Newly Built-Up Area: Topo-Geodetic Survey, UAV 3D Modelling and Ground-Penetrating Radar. Remote Sensing. 2022; 14(22):5822. https://doi.org/10.3390/rs14225822 Chicago/Turabian Style Sestras, Paul, Ștefan Bilașco, Sanda Roșca, Ioel Veres, Nicoleta Ilies, Artan Hysa, Velibor Spalević, and Sorin M. Cîmpeanu. 2022. „Multi-Instrumental Approach to Slope Failure Monitoring in a Landslide Susceptible Newly Built-Up Area: Topo-Geodetic Survey, UAV 3D Modelling and Ground-Penetrating Radar” Remote Sensing 14, no. 22: 5822. https://doi.org/10.3390/rs14225822

 

Multi-Instrumental Approach to Slope Failure Monitoring in a Landslide Susceptible Newly Built-Up Area: Topo-Geodetic Survey, UAV 3D Modelling and Ground-Penetrating Radar

 
1 Faculty of Civil Engineering, Technical University of Cluj-Napoca, 400020 Cluj-Napoca, Romania
2 Faculty of Geography, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
Cluj-Napoca Subsidiary Geography Section, Romanian Academy, 400015 Cluj-Napoca, Romania
Faculty of Architecture and Engineering, Epoka University, 1000 Tirana, Albania
Geography Department, Faculty of Philosophy, University of Montenegro, 81400 Niksic, Montenegro
Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine Bucharest, 011464 Bucharest, Romania
 
 

Abstract

Slope failures and landslides cause economic damage and deaths worldwide. These losses can be minimized by integrating different methodologies, instruments, and data monitoring to predict future landslides. In the constantly growing metropolitan area of Cluj-Napoca, Romania, changes in land cover, land use, and build-up areas are an issue. The unprecedented urban sprawl pushed the city limits from the Somes River to hilly terrain prone to landslides and erosion. This study focuses on a landslide-prone area where a previous slope failure caused significant economic losses. It combines topo-geodetic measurements, UAV monitoring of surface displacement, GIS spatial analysis, ground-penetrating radar investigations, and geotechnical assessment. Two years of data show that the slope is undergoing surface erosion, with soil displacements of a few centimeters. Geodetic monitoring of the retaining wall’s control points indicates a small rotation. Coupled with georadar profile imaging showing changes in soil and rock layers with an uplift trend, it was deduced that the area suffers from a global instability. The findings provide valuable information about the dynamics of landslides and erosion for forecasting future movements and developing preventative strategies based on a new methodology that combines affordable and prevalent instrumentation and techniques.
 
Keywords: geodesytopographyGNSStotal stationsurface erosiondeep landslidedisplacements GIS spatial analysisgeomaticsgeotechnics
Remote Sensing 202214(22), 5822; https://doi.org/10.3390/rs14225822
Special Issue:  UAVs for Civil Engineering Applications
 
Suggestive images with the activities and results obtained, presented in the article

***

Figure 1. Landslide susceptibility map [4] with relevant hotspots

 

Figure 2. The geographic location of the study area

 

Figure 3. Aerial photos of the emerged residential complex and monitored study area

 

Figure 4. Collage of images depicting the old retaining wall right before failure, and the damages that ensued on the industrial production hall after the slope failure

 

Figure 5. Collage of images depicting the newly constructed retaining wall and land improvement measures.

 

Figure 6. Methodological flowchart

 

 

Figure 7. Map of the prior research study’s landslide susceptibility [4] (a) and of the study area (b); the twelve factors that have been examined as potential influencing factors for slope mass movement: altitude (c), slope (d), aspect (e), distance to settlements (f), roads (g), hydrography (h), wetness index (i), stream power index (j), land-use (k), geology (l), depth of fragmentation (m), and fragmentation density (n)

 

Figure 8. Established local geodetic network

 

Figure 9. Obtained orthophoto with GCPs and CPs positioning and the instrumentation used

 

Figure 10. Obtained orthophoto with GPR profile locations and the instrumentation used

 

Figure 11. Displacement analysis on each axis, as well as overall spatial values

 

Figure 12. Surface movement rate

 

Figure 13. GPR longitudinal profile

 

References

  1. Corpade, C.; Man, T.; Petrea, D.; Corpade, A.-M.; Moldovan, C. Changes in landscape structure induced by transportation projects in Cluj-Napoca periurban area using GIS. Carpathian J. Earth Environ. Sci. 20149, 177–184. [Google Scholar]
  2. Dolean, B.-E.; Bilașco, Ș.; Petrea, D.; Moldovan, C.; Vescan, I.; Roșca, S.; Fodorean, I. Evaluation of the Built-Up Area Dynamics in the First Ring of Cluj-Napoca Metropolitan Area, Romania by Semi-Automatic GIS Analysis of Landsat Satellite Images. Appl. Sci. 202010, 7722. [Google Scholar] [CrossRef]
  3. Cebotari, S.; Cristea, M.; Moldovan, C.; Zubașcu, F. Renewable Energy’s Impact on Rural Development in Northwestern Romania. Energy Sustain. Dev. 201737, 110–123. [Google Scholar] [CrossRef]
  4. Sestras, P.; Bilasco, S.; Roşca, S.; Naș, S.; Bondrea, M.; Gâlgău, R.; Vereş, I.; Salagean, T.; Spalevic, V.; Cimpeanu, S. Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area. Sustainability 201911, 1362. [Google Scholar] [CrossRef]
  5. Sestras, P.; Bilașco, Ș.; Roșca, S.; Dudic, B.; Hysa, A.; Spalević, V. Geodetic and UAV Monitoring in the Sustainable Management of Shallow Landslides and Erosion of a Susceptible Urban Environment. Remote Sens. 202113, 385. [Google Scholar] [CrossRef]
  6. Bilaşco, Ş.; Roşca, S.; Fodorean, I.; Vescan, I.; Filip, S.; Petrea, D. Quantitative evaluation of the risk induced by dominant geomorphological processes on different land uses, based on GIS spatial analysis models. Front. Earth Sci. 201812, 311–324. [Google Scholar]
  7. Bălteanu, D.; Micu, M.; Jurchescu, M.; Malet, J.-P.; Sima, M.; Kucsicsa, G.; Dumitrică, C.; Petrea, D.; Mărgărint, M.C.; Bilaşco, S.T.; et al. National-scale landslide susceptibility map of Romania in a European methodological framework. Geomorphology 2020371, 107432. [Google Scholar] [CrossRef]
  8. Kerekes, A.H.; Poszet, S.L.; Andrea, G.Á.L. Landslide susceptibility assessment using the maximum entropy model in a sector of the Cluj–Napoca Municipality, Romania. Rev. Geomorfol. 201820, 130–146. [Google Scholar] [CrossRef]
  9. Kerekes, A.H.; Poszet, S.L.; Baciu, L.C. Investigating land surface deformation using InSAR and GIS techniques in Cluj–Napoca city’s most affected sector by urban sprawl (Romania). Rev. Geomorfol. 202022, 43–59. [Google Scholar] [CrossRef]
  10. Roşca, S.; Bilaşco, Ş.; Petrea, D.; Fodorean, I.; Vescan, I.; Filip, S. Application of landslide hazard scenarios at annual scale in the Niraj River basin (Transylvania Depression, Romania). Nat. Hazards 201577, 1573–1592. [Google Scholar]
  11. Galli, M.; Ardizzone, F.; Cardinali, M.; Guzzetti, F.; Reichenbach, P. Comparing landslide inventory maps. Geomorphology 200894, 268–289. [Google Scholar] [CrossRef]
  12. Cruden, D.M.; Varnes, D.J. Landslides: Investigation and mitigation. Chapter 3-Landslide types and processes. Transp. Res. Board Spec. Rep. 1996247, 36–75. [Google Scholar]
  13. Artese, S.; Perrelli, M. Monitoring a Landslide with High Accuracy by Total Station: A DTM-Based Model to Correct for the Atmospheric Effects. Geosciences 20188, 46. [Google Scholar] [CrossRef]
  14. Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.T. Landslide inventory maps: New tools for an old problem. Earth Sci. Rev. 2012112, 42–66. [Google Scholar] [CrossRef]
  15. Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 201473, 209–263. [Google Scholar] [CrossRef]
  16. Stiros, S.C.; Vichas, C.; Skourtis, C. Landslide Monitoring Based on Geodetically Derived Distance Changes. J. Surv. Eng. 2004130, 156–162. [Google Scholar] [CrossRef]
  17. Tsaia, Z.; Youa, G.J.Y.; Leea, H.Y.; Chiub, Y.J. Use of a total station to monitor post-failure sediment yields in landslide sites of the Shihmen reservoir watershed. Geomorphology 2012139–140, 438–451. [Google Scholar] [CrossRef]
  18. Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012179, 300–314. [Google Scholar] [CrossRef]
  19. Turner, D.; Lucieer, A.; De Jong, S.M. Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 20157, 1736–1757. [Google Scholar] [CrossRef]
  20. Al-Rawabdeh, A.; Moussa, A.; Foroutan, M.; El-Sheimy, N.; Habib, A. Time Series UAV Image-Based Point Clouds for Landslide Progression Evaluation Applications. Sensors 201717, 2378. [Google Scholar] [CrossRef]
  21. Devoto, S.; Macovaz, V.; Mantovani, M.; Soldati, M.; Furlani, S. Advantages of Using UAV Digital Photogrammetry in the Study of Slow-Moving Coastal Landslides. Remote Sens. 202012, 3566. [Google Scholar] [CrossRef]
  22. Akca, D. Photogrammetric monitoring of an artificially generated shallow landslide. Photogramm. Rec. 201328, 178–195. [Google Scholar] [CrossRef]
  23. Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 201261, 5–28. [Google Scholar] [CrossRef]
  24. Dewitte, O.; Jasselette, J.C.; Cornet, Y.; Van Den Eeckhaut, M.; Collignon, A.; Poesen, J.; Demoulin, A. Tracking landslide displacements by multi-temporal DTMs: A combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Eng. Geol. 200899, 11–22. [Google Scholar] [CrossRef]
  25. Görüm, T. Landslide recognition and mapping in a mixed forest environment from airborne LiDAR data. Eng. Geol. 2019258, 105155. [Google Scholar] [CrossRef]
  26. Syzdykbayev, M.; Karimi, B.; Karimi, H.A. Persistent homology on LiDAR data to detect landslides. Remote Sens. Environ. 2020246, 111816. [Google Scholar] [CrossRef]
  27. Bernat Gazibara, S.; Krkač, M.; Mihalić Arbanas, S. Landslide inventory mapping using LiDAR data in the City of Zagreb (Croatia). J. Maps 201915, 773–779. [Google Scholar] [CrossRef]
  28. Peduto, D.; Oricchio, L.; Nicodemo, G.; Crosetto, M.; Ripoll, J.; Buxó, P.; Janeras, M. Investigating the kinematics of the unstable slope of Barbera de la Conca (Catalonia, Spain) and the effects on the exposed facilities by GBSAR and multi-source conventional monitoring. Landslides 202118, 457–469. [Google Scholar] [CrossRef]
  29. Althuwaynee, O.F.; Pradhan, B.; Lee, S. A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison. Int. J. Remote Sens. 201637, 1190–1209. [Google Scholar] [CrossRef]
  30. Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Landslide volumetric analysis using cartosat-1-derived dems. IEEE Geosci. Remote Sens. Lett. 20107, 582–586. [Google Scholar] [CrossRef]
  31. Cigna, F.; Bianchini, S.; Casagli, N. How to assess landslide activity and intensity with persistent scatterer interferometry (PSI): The PSI-based matrix approach. Landslides 201210, 267–283. [Google Scholar] [CrossRef]
  32. Lu, P.; Catani, F.; Tofani, V.; Casagli, N. Quantitative hazard and risk assessment for slow-moving landslides from persistent Scatterer interferometry. Landslides 201411, 685–696. [Google Scholar] [CrossRef]
  33. Ghorbanzadeh, O.; Didehban, K.; Rasouli, H.; Kamran, K.V.; Feizizadeh, B.; Blaschke, T. An Application of Sentinel-1, Sentinel-2, and GNSS Data for Landslide Susceptibility Mapping. ISPRS Int. J. Geo Inf. 20209, 561. [Google Scholar] [CrossRef]
  34. Simeoni, L.; Ferro, E.; Tombolato, S. Reliability of Field Measurements of Displacements in Two Cases of Viaduct-Extremely Slow Landslide Interactions. Eng. Geol. Soc. Territ. 20152, 125–128. [Google Scholar]
  35. Afeni, T.B.; Cawood, F.T. Slope Monitoring using Total Station: What are the Challenges and How Should These be Mitigated? S. Afr. J. Geomat. 20132, 41–53. [Google Scholar]
  36. Sestras, P. Methodological and On-Site Applied Construction Layout Plan with Batter Boards Stake-Out Methods Comparison: A Case Study of Romania. Appl. Sci. 202111, 4331. [Google Scholar] [CrossRef]
  37. Salagean, T.; Rusu, T.; Onose, D.; Farcas, R.; Duda, B.; Sestras, P. The use of laser scanning technology in land monitoring of mining areas. Carpathian J. Earth Environ. Sci. 201611, 565573. [Google Scholar]
  38. Song, Y.; Wu, P. Earth Observation for Sustainable Infrastructure: A Review. Remote Sens. 202113, 1528. [Google Scholar] [CrossRef]
  39. Sestras, P.; Roșca, S.; Bilașco, Ș.; Naș, S.; Buru, S.M.; Kovacs, L.; Spalević, V.; Sestras, A.F. Feasibility Assessments Using Unmanned Aerial Vehicle Technology in Heritage Buildings: Rehabilitation-Restoration, Spatial Analysis and Tourism Potential Analysis. Sensors 202020, 2054. [Google Scholar] [CrossRef]
  40. Solazzo, D.; Sankey, J.B.; Sankey, T.T.; Munson, S.M. Mapping and measuring aeolian sand dunes with photogrammetry and LiDAR from unmanned aerial vehicles (UAV) and multispectral satellite imagery on the Paria Plateau, AZ, USA. Geomorphology 2018319, 174–185. [Google Scholar] [CrossRef]
  41. Oniga, V.-E.; Breaban, A.-I.; Pfeifer, N.; Chirila, C. Determining the Suitable Number of Ground Control Points for UAS Images Georeferencing by Varying Number and Spatial Distribution. Remote Sens. 202012, 876. [Google Scholar] [CrossRef]
  42. Oniga, V.-E.; Breaban, A.-I.; Pfeifer, N.; Diac, M. 3D Modeling of Urban Area Based on Oblique UAS Images—An End-to-End Pipeline. Remote Sens. 202214, 422. [Google Scholar] [CrossRef]
  43. Glira, P.; Pfeifer, N.; Mandlburger, G. Hybrid Orientation of Airborne Lidar Point Clouds and Aerial Images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 20194, 567–574. [Google Scholar] [CrossRef]
  44. Bandini, F.; Sunding, T.P.; Linde, J.; Smith, O.; Jensen, I.K.; Köppl, C.J.; Bauer-Gottwein, P. Unmanned Aerial System (UAS) observations of water surface elevation in a small stream: Comparison of radar altimetry, LIDAR and photogrammetry techniques. Remote Sens. Environ. 2020237, 111487. [Google Scholar] [CrossRef]
  45. Cramer, M.; Haala, N.; Laupheimer, D.; Mandlburger, G.; Havel, P. Ultra-High Precision UAV-Based Lidar and Dense Image Matching. In Proceedings of the ISPRS TC I Mid-term Symposium “Innovative Sensing—From Sensors to Methods and Applications”, Karlsruhe, Germany, 10–12 October 2018. [Google Scholar]
  46. Pirasteh, S.; Li, J. Landslides investigations from geoinformatics perspective: Quality, challenges, and recommendations. Geomatics, Nat. Hazards Risk 20178, 448–465. [Google Scholar] [CrossRef]
  47. Lissak, C.; Maquaire, O.; Malet, J.P.; Lavigne, F.; Virmoux, C.; Gomez, C.; Davidson, R. Ground-penetrating radar observations for estimating the vertical displacement of rotational landslides. Nat. Hazards Earth Syst. Sci. 201515, 1399–1406. [Google Scholar] [CrossRef]
  48. Qi, L.; Tan, W.; Huang, P.; Xu, W.; Qi, Y.; Zhang, M. Landslide Prediction Method Based on a Ground-Based Micro-Deformation Monitoring Radar. Remote Sens. 202012, 1230. [Google Scholar] [CrossRef]
  49. Hussain, Y.; Cardenas-Soto, M.; Martino, S.; Moreira, C.; Borges, W.; Hamza, O.; Prado, R.; Uagoda, R.; Rodríguez-Rebolledo, J.; Silva, R.C.; et al. Multiple Geophysical Techniques for Investigation and Monitoring of Sobradinho Landslide, Brazil. Sustainability 201911, 6672. [Google Scholar] [CrossRef]
  50. Verbovšek, T.; Košir, A.; Teran, M.; Zajc, M.; Popit, T. Volume determination of the Selo landslide complex (SW Slovenia): Integrating field mapping, ground penetrating radar and GIS approaches. Landslides 201714, 1265–1274. [Google Scholar] [CrossRef]
  51. Barnhardt, W.A.; Kayen, R.E. Radar structure of earthquake-induced, coastal landslides in Anchorage, Alaska. Environ. Geosci. 20007, 38–45. [Google Scholar] [CrossRef]
  52. Bichler, A.; Bobrowsky, P.; Best, M.; Douma, M.; Hunter, J.; Calvert, T.; Burns, R. Three-dimensional mapping of a landslide using a multi-geophysical approach: The Quesnel Forks landslide. Landslides 20041, 29–40. [Google Scholar] [CrossRef]
  53. Sass, O.; Bell, R.; Glade, T. Comparison of GPR, 2D-resistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany). Geomorphology 200893, 89–103. [Google Scholar] [CrossRef]
  54. Mantovani, M.; Devoto, S.; Forte, E.; Mocnik, A.; Pasuto, A.; Piacentini, D.; Soldati, M. A multidisciplinary approach for rock spreading and block sliding investigation in the north-western coast of Malta. Landslides 201310, 611–622. [Google Scholar] [CrossRef]
  55. Kadioglu, S.; Ulugergerli, E.U. Imaging karstic cavities in transparent 3D volume of the GPR data set in Akkopru dam, Mugla, Turkey. Nondestruct. Test. Eval. 201227, 263–271. [Google Scholar] [CrossRef]
  56. Kannaujiya, S.; Chattoraj, S.L.; Jayalath, D.; Bajaj, K.; Podali, S.; Bisht, M.P.S. Integration of satellite remote sensing and geophysical techniques (electrical resistivity tomography and ground penetrating radar) for landslide characterization at Kunjethi (Kalimath), Garhwal Himalaya, India. Nat. Hazards 201997, 1191–1208. [Google Scholar] [CrossRef]
  57. Şerban, G.; Rus, I.; Vele, D.; Breţcan, P.; Alexe, M.; Petrea, D. Flood-prone area delimitation using UAV technology, in the areas hard-to-reach for classic aircrafts: Case study in the north-east of Apuseni Mountains, Transylvania. Nat. Hazards 201682, 1817–1832. [Google Scholar] [CrossRef]
  58. Hysa, A.; Spalevic, V.; Dudic, B.; Roșca, S.; Kuriqi, A.; Bilașco, Ș.; Sestras, P. Utilizing the Available Open-Source Remotely Sensed Data in Assessing the Wildfire Ignition and Spread Capacities of Vegetated Surfaces in Romania. Remote Sens. 202113, 2737. [Google Scholar] [CrossRef]
  59. Matei, I.; Pacurar, I.; Rosca, S.; Bilasco, S.; Sestras, P.; Rusu, T.; Jude, E.T.; Tăut, F.D. Land Use Favourability Assessment Based on Soil Characteristics and Anthropic Pollution. Case Study Somesul Mic Valley Corridor, Romania. Agronomy 202010, 1245. [Google Scholar] [CrossRef]
  60. Fîrțală-Cioncuț, A.; Bilașco, S.; Fodorean, I.; Roșca, S.; Vescan, I. Identification and evaluation of the risk induced by landslides based on G.I.S. models of spatial analysis. Case study: Bicazu Ardelean, Romania. Nova Geodesia 20223, 52. [Google Scholar] [CrossRef]
  61. Jaedicke, C.; Van Den Eeckhaut, M.; Nadim, F.; Hervás, J.; Kalsnes, B.; Vangelsten, B.V.; Smith, J.T.; Tofani, V.; Ciurean, R.; Winter, M.G. Identification of landslide hazard and risk ‘hotspots’ in Europe. Bull. Eng. Geol. Environ. 201473, 325–339. [Google Scholar] [CrossRef]
  62. Jebur, M.N.; Pradhan, B.; Shafri, H.Z.M.; Yusoff, Z.M.; Tehrany, M.S. An integrated user-friendly ArcMAP tool for bivariate statistical modelling in geoscience applications. Geosci. Model Dev. 20158, 881–891. [Google Scholar] [CrossRef]
  63. Chalkias, C.; Ferentinou, M.; Polykretis, C. GIS Supported Landslide Susceptibility Modeling at Regional Scale: An Expert-Based Fuzzy Weighting Method. ISPRS Int. J. Geo Inf. 20143, 523–539. [Google Scholar] [CrossRef]
  64. Vakhshoori, V.; Zare, M. Is the ROC curve a reliable tool to compare the validity of landslide susceptibility maps? Geomat. Nat. Hazards Risk 20189, 249–266. [Google Scholar] [CrossRef]
  65. Borrelli, L.; Ciurleo, M.; Gullà, G. Shallow Landslide Susceptibility Assessment in Granitic Rocks Using Gis-Based Statistical Methods: The Contribution of the Weathering Grade Map. Landslides 201815, 1127–1142. [Google Scholar] [CrossRef]
  66. Ciurleo, M.; Cascini, L.; Calvello, M. A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils. Eng. Geol. 2017223, 71–81. [Google Scholar] [CrossRef]
  67. Pelzer, H. Zur Analyse Geodatischer Deformations-Messungen; Verlag der Bayer. Akad. d. Wiss.: Munchen, Germany, 1971; Volume 164. [Google Scholar]
  68. Baarda, W. A Testing Procedure for Use in Geodetic Networks; Rijkscommissie Voor Geodesie: Delft, The Netherlands, 1968; Volume 2. [Google Scholar]
  69. Chrzanowski, A. Optimization of the breakthrough accuracy in tunneling surveys. Can. Surv. 198135, 5–16. [Google Scholar] [CrossRef]
  70. Chrzanowski, A.; Chen, Y.; Romero, P.; Secord, J.M. Integration of geodetic and geotechnical deformation surveys in the geosciences. Tectonophysics 1986130, 369–383. [Google Scholar] [CrossRef]
  71. Kersten, T.; Kobe, M.; Gabriel, G.; Timmen, L.; Schön, S.; Vogel, D. Geodetic monitoring of sub erosion-induced subsidence processes in urban areas. J. Appl. Geod. 201711, 21–29. [Google Scholar]
  72. Hassan, K.M.Z. Comparative evaluation among various robust estimation methods in deformation analysis. Spat. Inf. Res. 201624, 485–492. [Google Scholar] [CrossRef]
  73. Bilașco, Ș.; Hognogi, G.-G.; Roșca, S.; Pop, A.-M.; Iuliu, V.; Fodorean, I.; Marian-Potra, A.-C.; Sestras, P. Flash Flood Risk Assessment and Mitigation in Digital-Era Governance Using Unmanned Aerial Vehicle and GIS Spatial Analyses Case Study: Small River Basins. Remote Sens. 202214, 2481. [Google Scholar] [CrossRef]
  74. Akturk, E.; Altunel, A.O. Accuracy assesment of a low-cost UAV derived digital elevation model (DEM) in a highly broken and vegetated terrain. Measurement 2019136, 382–386. [Google Scholar] [CrossRef]
  75. Gong, C.; Lei, S.; Bian, Z.; Liu, Y.; Zhang, Z.; Cheng, W. Analysis of the development of an erosion gully in an open-cast coal mine dump during a winter freeze-thaw cycle by using low-cost UAVs. Remote Sens. 201911, 1356. [Google Scholar] [CrossRef]
  76. Han, X.; Thomasson, J.A.; Xiang, Y.; Gharakhani, H.; Yadav, P.K.; Rooney, W.L. Multifunctional Ground Control Points with a Wireless Network for Communication with a UAV. Sensors 201919, 2852. [Google Scholar] [CrossRef] [PubMed]
  77. Lendzioch, T.; Langhammer, J.; Jenicek, M. Estimating Snow Depth and Leaf Area Index Based on UAV Digital Photogrammetry. Sensors 201919, 1027. [Google Scholar] [CrossRef] [PubMed]
  78. Okeson, T.J.; Barrett, B.J.; Arce, S.; Vernon, C.A.; Franke, K.W.; Hedengren, J.D. Achieving Tiered Model Quality in 3D Structure from Motion Models Using a Multi-Scale View-Planning Algorithm for Automated Targeted Inspection. Sensors 201919, 2703. [Google Scholar] [CrossRef] [PubMed]
  79. Cignetti, M.; Godone, D.; Wrzesniak, A.; Giordan, D. Structure from Motion Multisource Application for Landslide Characterization and Monitoring: The Champlas du Col Case Study, Sestriere, North-Western Italy. Sensors 201919, 2364. [Google Scholar] [CrossRef]
  80. Leary, R.J.; Hensleigh, J.W.; Wheaton, D.J.M.; Demeurichy, K.D. Recommended Geomorphic Change Detection Procedures for Repeat TLS Surveys from Hells Canyon, Idaho; Utah State University: Logan, UT, USA, 2012. [Google Scholar]
  81. Xie, P.; Wen, H.; Xiao, P. Evaluation of ground-penetrating radar (GPR) and geology survey for slope stability study in mantled karst region. Environ. Earth Sci. 201877, 122. [Google Scholar] [CrossRef]
  82. Hallal, N.; Yelles Chaouche, A.; Hamai, L.; Lamali, A.; Dubois, L.; Mohammedi, Y.; Hamidatou, M.; Djadia, L.; Abtout, A. Spatiotemporal evolution of the El Biar landslide (Algiers): New field observation data constrained by ground-penetrating radar investigations. Bull. Eng. Geol. Environ. 201978, 5653–5670. [Google Scholar] [CrossRef]
  83. Costea, A.; Bilasco, S.; Irimus, I.-A.; Rosca, S.; Vescan, I.; Fodorean, I.; Sestras, P. Evaluation of the Risk Induced by Soil Erosion on Land Use. Case Study: Guruslău Depression. Sustainability 202214, 652. [Google Scholar] [CrossRef]
  84. Bilașco, Ș.; Roșca, S.; Vescan, I.; Fodorean, I.; Dohotar, V.; Sestras, P. A GIS-Based Spatial Analysis Model Approach for Identification of Optimal Hydrotechnical Solutions for Gully Erosion Stabilization. Case Study. Appl. Sci. 202111, 4847. [Google Scholar] [CrossRef]
  85. Spalevic, V.; Barovic, G.; Vujacic, D.; Curovic, M.; Behzadfar, M.; Djurovic, N.; Dudic, B.; Billi, P. The Impact of Land Use Changes on Soil Erosion in the River Basin of Miocki Potok, Montenegro. Water 202012, 2973. [Google Scholar] [CrossRef]
  86. Chalise, D.; Kumar, L.; Spalevic, V.; Skataric, G. Estimation of Sediment Yield and Maximum Outflow Using the IntErO Model in the Sarada River Basin of Nepal. Water 201911, 952. [Google Scholar] [CrossRef]
  87. Nikolic, G.; Spalevic, V.; Curovic, M.; Khaledi Darvishan, A.; Skataric, G.; Pajic, M.; Kavian, A.; Tanaskovik, V. Variability of Soil Erosion Intensity Due to Vegetation Cover Changes: Case Study of Orahovacka Rijeka, Montenegro. Not. Bot. Horti Agrobot. Cluj Napoca 201847, 237–248. [Google Scholar] [CrossRef]
  88. Gocić, M.; Dragićević, S.; Radivojević, A.; Martić Bursać, N.; Stričević, L.; Đorđević, M. Changes in Soil Erosion Intensity Caused by Land Use and Demographic Changes in the Jablanica River Basin, Serbia. Agriculture 202010, 345. [Google Scholar] [CrossRef]

 

***